翻訳と辞書
Words near each other
・ De Camp Nunatak
・ De Campo Uno-Dos-Tres Orihinal
・ De Candolle system
・ De cap tà l'immortèla
・ De cape et de crocs
・ De Capell Brooke baronets
・ De Cara al Viento
・ De Carbon
・ De Carlo
・ De Carne Christi
・ De Carteret family
・ De Carthage à Carthage
・ De Cartier
・ De Cartier (Charleroi Metro)
・ De Casibus Virorum Illustrium
De Casteljau's algorithm
・ De Castellane
・ De Castelnau (Montreal Metro)
・ De Castro families
・ De castro family
・ De Castro family (Sephardi Jewish)
・ De Cecco
・ De Ceremoniis
・ De Cesare
・ De Chaunac
・ De Christiana expeditione apud Sinas
・ De Cierta Manera
・ De Cive
・ De civilitate morum puerilium
・ De Clare


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

De Casteljau's algorithm : ウィキペディア英語版
De Casteljau's algorithm
In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.
Although the algorithm is slower for most architectures when compared with the direct approach, it is more numerically stable.
==Definition==
A Bézier curve ''B'' (of degree ''n'', with control points \beta_0, \ldots, \beta_n) can be written in Bernstein form as follows
:B(t) = \sum_^\beta_b_(t) ,
where ''b'' is a Bernstein basis polynomial
: b_(t) = (1-t)^t^i.
The curve at point ''t''0 can be evaluated with the recurrence relation
:\beta_i^ := \beta_i \mbox i=0,\ldots,n
:\beta_i^ := \beta_i^ (1-t_0) + \beta_^ t_0 \mbox i = 0,\ldots,n-j \mbox j= 1,\ldots,n
Then, the evaluation of B at point t_0 can be evaluated in n steps of the algorithm. The result B(t_0) is given by :
:B(t_0)=\beta_0^.
Moreover, the Bézier curve B can be split at point t_0 into two curves with respective control points :
:\beta_0^,\beta_0^,\ldots,\beta_0^
:\beta_0^,\beta_1^,\ldots,\beta_n^

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「De Casteljau's algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.